What is Oxytocin?

Published
oxytocin chemocal structure model

Oxytocin is a mammalian neurohypophysial hormone. Produced in the supraoptic and paraventricular nuclei of the hypothalamus by nerve axons, and stored in the posterior pituitary gland, oxytocin acts primarily as a neuromodulator in the brain.

Oxytocin plays an important role in the neuroanatomy of intimacy, specifically in sexual reproduction of both sexes, in particular during and after childbirth. It is released in large amounts after distension of the cervix and uterus during labor, facilitating birth, maternal bonding, and, after stimulation of the nipples, lactation. Both childbirth and milk ejection result from positive feedback mechanisms.

Recent studies have begun to investigate oxytocin’s role in various behaviors, including orgasm, social recognition, pair bonding, anxiety, and maternal behaviors. For this reason, it is sometimes referred to as the “bonding hormone”.

There is some evidence that oxytocin promotes ethnocentric behavior, incorporating the trust and empathy of in-groups with their suspicion and rejection of outsiders. Furthermore, genetic differences in the oxytocin receptor gene (OXTR) have been associated with maladaptive social traits such as aggressive behaviour.

It is on the World Health Organization’s List of Essential Medicines, a list of the most important medications needed in a basic health system.

Structure and Relation to Vasopressin

Oxytocin is a peptide of nine amino acids (a nonapeptide). Its systematic name is cysteine-tyrosine-isoleucine-glutamine-asparagine-cysteine-proline-leucine-glycine-amide (cys – tyr – ile – gln – asn – cys – pro – leu – gly – NH2, or CYIQNCPLG-NH2). Oxytocin has a molecular mass of 1007 daltons. One international unit (IU) of oxytocin is the equivalent of about 2 micrograms of pure peptide.

While the structure of oxytocin is highly conserved in placental mammals, a novel structure of oxytocin was recently reported in marmosets, tamarins, and other new world primates. Genomic sequencing of the gene for oxytocin revealed a single in-frame mutation (thymine for cytosine) which results in a single amino acid substitution at the 8-position (proline for leucine).

The biologically active form of oxytocin, commonly measured by RIA and/or HPLC techniques, is also known as the octapeptide “oxytocin disulfide” (oxidized form), but oxytocin also exists as a reduced dithiol nonapeptide called oxytoceine. It has been theorized that open chain oxytoceine (the reduced form of oxytocin) may also act as a free radical scavenger (by donating an electron to a free radical); oxytoceine may then be oxidized back to oxytocin via the dehydroascorbate ascorbate redox couple.

The structure of oxytocin is very similar to that of vasopressin (cys – tyr – phe – gln – asn – cys – pro – arg – gly – NH2), also a nonapeptide with a sulfur bridge, whose sequence differs from oxytocin by two amino acids.  Oxytocin and vasopressin were isolated and synthesized by Vincent du Vigneaud in 1953, work for which he received the Nobel Prize in Chemistry in 1955.

Oxytocin and vasopressin are the only known hormones released by the human posterior pituitary gland to act at a distance. However, oxytocin neurons make other peptides, including corticotropin-releasing hormone and dynorphin, for example, that act locally.

The magnocellular neurosecretory cells that make oxytocin are adjacent to magnocellular neurosecretory cells that make vasopressin. These are large neuroendocrine neurons which are excitable and can generate action potentials.

Physiological Effects

Oxytocin has peripheral (hormonal) actions, and also has actions in the brain. Its actions are mediated by specific, high-affinity oxytocin receptors. The oxytocin receptor is a G-protein-coupled receptor that requires Mg2+ and cholesterol. It belongs to the rhodopsin-type (class I) group of G-protein-coupled receptors.

The peripheral actions of oxytocin mainly reflect secretion from the pituitary gland.  The behavioral effects of oxytocin are thought to reflect release from centrally projecting oxytocin neurons, different from those that project to the pituitary gland, or that are collaterals from them. Oxytocin receptors are expressed by neurons in many parts of the brain and spinal cord, including the amygdala, ventromedial hypothalamus, septum, nucleus accumbens, and brainstem.

Letdown Reflex

In breastfeeding mothers, oxytocin acts at the mammary glands, causing milk to be ’let down’ into subareolar sinuses, from where it can be excreted via the nipple. Suckling by the infant at the nipple is relayed by spinal nerves to the hypothalamus.

The stimulation causes neurons that make oxytocin to fire action potentials in intermittent bursts; these bursts result in the secretion of pulses of oxytocin from the neurosecretory nerve terminals of the pituitary gland.

Uterine Contraction

Important for cervical dilation before birth, oxytocin causes contractions during the second and third stages of labor. Oxytocin release during breastfeeding causes mild but often painful contractions during the first few weeks of lactation. This also serves to assist the uterus in clotting the placental attachment point postpartum.

However, in knockout mice lacking the oxytocin receptor, reproductive behavior and parturition are normal.

Social Behavior

Oxytocin is also thought to modulate inflammation by decreasing certain cytokines. Thus, the increased release in oxytocin following positive social interactions has the potential to improve wound healing.

A study by Marazziti and colleagues used heterosexual couples to investigate this possibility. They found increases in plasma oxytocin following a social interaction were correlated with faster wound healing. They hypothesized this was due to oxytocin reducing inflammation, thus allowing the wound to heal more quickly. This study provides preliminary evidence that positive social interactions may directly influence aspects of health.

According to a study published in 2014, the silencing of oxytocin receptor in the medial prefrontal cortex (mPFC) of female mice resulted in loss of social interest in male mice, specifically during the sexually receptive phase of the estrous cycle.

The relationship between oxytocin and human sexual response is unclear. At least two uncontrolled studies have found increases in plasma oxytocin at orgasm – in both men and women.

Plasma oxytocin levels are notably increased around the time of self-stimulated orgasm and are still higher than baseline when measured five minutes after self arousal. The authors of one of these studies speculated that oxytocin’s effects on muscle contractibility may facilitate sperm and egg transport.

In a study measuring oxytocin serum levels in women before and after sexual stimulation, the author suggests it serves an important role in sexual arousal. This study found genital tract stimulation resulted in increased oxytocin immediately after orgasm.

Another study reported increases of oxytocin during sexual arousal could be in response to nipple/areola, genital, and/or genital tract stimulation as confirmed in other mammals.

Murphy et al. (1987), studying men, found oxytocin levels were raised throughout sexual arousal with no acute increase at orgasm. A more recent study of men found an increase in plasma oxytocin immediately after orgasm, but only in a portion of their sample that did not reach statistical significance. The authors noted these changes “may simply reflect contractile properties on reproductive tissue”.

Oxytocin evokes feelings of contentment, reductions in anxiety, and feelings of calmness and security when in the company of the mate. This suggests oxytocin may be important for the inhibition of the brain regions associated with behavioral control, fear, and anxiety, thus allowing orgasm to occur. Research has also demonstrated that oxytocin can decrease anxiety and protect against stress, particularly in combination with social support.

Due to its similarity to vasopressin, it can reduce the excretion of urine slightly. In several species, oxytocin can stimulate sodium excretion from the kidneys (natriuresis), and, in humans, high doses can result in hyponatremia.

Oxytocin and oxytocin receptors are also found in the heart in some rodents, and the hormone may play a role in the embryonal development of the heart by promoting cardiomyocyte differentiation. However, the absence of either oxytocin or its receptor in knockout mice has not been reported to produce cardiac insufficiencies.

Modulation of hypothalamic-pituitary-adrenal axis activity: Oxytocin, under certain circumstances, indirectly inhibits release of adrenocorticotropic hormone and cortisol and, in those situations, may be considered an antagonist of vasopressin.

Autism

Oxytocin may play a role in autism and may be an effective treatment for autism’s repetitive and affiliative behaviors. Oxytocin treatments also resulted in an increased retention of affective speech in adults with autism.

Two related studies in adults, in 2003 and 2007, found oxytocin decreased repetitive behaviors and improved interpretation of emotions. More recently, intranasal administration of oxytocin was found to increase emotion recognition in children as young as 12 who are diagnosed with autism spectrum disorders.

Oxytocin has also been implicated in the etiology of autism, with one report suggesting autism is correlated with genomic deletion of the gene containing the oxytocin receptor gene (OXTR). Studies involving Caucasian and Finnish samples and Chinese Han families provide support for the relationship of OXTR with autism.

Autism may also be associated with an aberrant methylation of OXTR. After treatment with inhaled oxytocin, autistic patients exhibit more appropriate social behavior. While this research suggests some promise, further clinical trials of oxytocin are required to demonstrate potential benefit and side effects in the treatment of autism. As such, researchers do not recommend use of oxytocin as a treatment for autism outside of clinical trials.

Increasing Trust and Reducing Fear

In a risky investment game, experimental subjects given nasally administered oxytocin displayed “the highest level of trust” twice as often as the control group. Subjects who were told they were interacting with a computer showed no such reaction, leading to the conclusion that oxytocin was not merely affecting risk aversion.

Nasally administered oxytocin has also been reported to reduce fear, possibly by inhibiting the amygdala (which is thought to be responsible for fear responses). Indeed, studies in rodents have shown oxytocin can efficiently inhibit fear responses by activating an inhibitory circuit within the amygdala.

Some researchers have argued oxytocin has a general enhancing effect on all social emotions, since intranasal administration of oxytocin also increases envy and Schadenfreude.

Trust is increased by oxytocin. Disclosure of emotional events is a sign of trust in humans. When recounting a negative event, humans who receive intranasal oxytocin share more emotional details and stories with more emotional significance. Humans also find faces more trustworthy after receiving intranasal oxytocin.

In a study, participants who received intranasal oxytocin viewed photographs of human faces with neutral expressions and found them to be more trustworthy than those who did not receive oxytocin. This may be because oxytocin reduces the fear of social betrayal in humans. Even after experiencing social alienation by being excluded from a conversation, humans who received oxytocin scored higher in trust on the revised NEO Personality Inventory.

While Oxytocin increases trust, it does so only to a certain degree. In a study, participants played a variation of the trust game and acted as an “investor,” deciding how much money to allocate to a “trustee.” The trustee was described as trustworthy, untrustworthy, or neutral.

Participants who received intranasal oxytocin gave more money to the trustworthy and neutral trustees. Participants that received oxytocin did not give more money to the untrustworthy trustee, implying that oxytocin only increases trust when there is no reason to be distrustful. When there is a reason to be distrustful, such as experiencing betrayal, differing reactions are associated with oxytocin receptor gene (OXTR) differences. Those with the CT haplotype experience a stronger reaction, in the form of anger, to betrayal.

Oxytocin affects social distance between adult males and females, and may be responsible at least in part for romantic attraction and subsequent monogamous pair bonding. An oxytocin nasal spray caused men in a monogamous relationship, but not single men, to increase the distance between themselves and an attractive woman during a first encounter by 10 to 15 centimeters. The researchers suggested that oxytocin may help promote fidelity within monogamous relationships.

Affecting generosity by increasing empathy during perspective taking: In a neuroeconomics experiment, intranasal oxytocin increased generosity in the Ultimatum Game by 80%, but had no effect in the Dictator Game that measures altruism. Perspective-taking is not required in the Dictator Game, but the researchers in this experiment explicitly induced perspective-taking in the Ultimatum Game by not identifying to participants into which role they would be placed. Serious methodological questions have arisen, however, with regard to the role of oxytocin in trust and generosity.

Empathy in healthy males has been shown to be increased after intranasal oxytocin This is most likely due to the effect of oxytocin in enhancing eye gaze. There is some discussion about which aspect of empathy oxytocin might alter – for example, cognitive vs. emotional empathy.

Cognitive Function

Certain learning and memory functions are impaired by centrally administered oxytocin. Also, systemic oxytocin administration can impair memory retrieval in certain aversive memory tasks. Interestingly, oxytocin does seem to facilitate learning and memory specifically for social information.

Healthy males administered intranasal oxytocin show improved memory for human faces, in particular happy faces. They also show improved recognition for positive social cues over threatening social cues  and improved recognition of fear.

Sexual Arousal

Oxytocin injected into the cerebrospinal fluid causes spontaneous erections in rats, reflecting actions in the hypothalamus and spinal cord.

Centrally administrated oxytocin receptor antagonists can prevent noncontact erections, which is a measure of sexual arousal. Studies using oxytocin antagonists in female rats provide data that oxytocin increases lordosis behavior, indicating an increase in sexual receptivity.

Bonding

In the prairie vole, oxytocin released into the brain of the female during sexual activity is important for forming a monogamous pair bond with her sexual partner. Vasopressin appears to have a similar effect in males. Oxytocin has a role in social behaviors in many species, so it likely also does in humans.

In a 2003 study, both humans and dog oxytocin levels in the blood rose after five to 24 minutes of a petting session. This possibly plays a role in the emotional bonding between humans and dogs.

Maternal Behavior

Female rats given oxytocin antagonists after giving birth do not exhibit typical maternal behavior. By contrast, virgin female sheep show maternal behavior toward foreign lambs upon cerebrospinal fluid infusion of oxytocin, which they would not do otherwise.

Oxytocin is involved in the initiation of maternal behavior, not its maintenance; for example, it is higher in mothers after they interact with unfamiliar children rather than their own.

Drug Interactions

According to some studies in animals, oxytocin inhibits the development of tolerance to various addictive drugs (opiates, cocaine, alcohol), and reduces withdrawal symptoms.

MDMA (ecstasy) may increase feelings of love, empathy, and connection to others by stimulating oxytocin activity primarily via activation of serotonin 5-HT1A receptors, if initial studies in animals apply to humans. The anxiolytic Buspar (buspirone) may produce some of its effects via 5-HT1A receptor-induced oxytocin stimulation as well.

Romantic Attachment

In some studies, high levels of plasma oxytocin have been correlated with romantic attachment. For example, if a couple is separated for a long period of time, anxiety can increase due to the lack of physical affection.

Oxytocin may aid romantically attached couples by decreasing their feelings of anxiety when they are together.

Feeding

Recent evidence has suggested that oxytocin neurons in the para-ventricular hypothalamus in the brain may play a key role in suppressing appetite under normal conditions and that other hypothalamic neurons may trigger eating via inhibition of these oxytocin neurons.

This population of oxytocin neurons are absent in Prader-Willi syndrome, a genetic disorder that leads to uncontrollable feeding and obesity, and may play a key role in its pathophysiology.

Oxytocin and Intergroup Bonding

Oxytocin can increase positive attitudes, such as bonding, toward individuals with similar characteristics, who then become classified as “in-group” members, whereas individuals who are dissimilar become classified as “out-group” members. Race can be used as an example of in-group and out-group tendencies because society often categorizes individuals into groups based on race (Caucasian, African American, Latino, etc.).

One study that examined race and empathy found that participants receiving nasally administered oxytocin had stronger reactions to pictures of in-group members making pained faces than to pictures of out-group members with the same expression.

This shows that oxytocin may be implicated in our ability to empathize with individuals of different races and could potentially translate into willingness to help individuals in pain or stressful situations. Moreover, individuals of one race may be more inclined to help individuals of the same race than individuals of another race when they are experiencing pain.

Oxytocin has also been implicated in lying when lying would prove beneficial to other in-group members. In a study where such a relationship was examined, it was found that when individuals were administered oxytocin, rates of dishonesty in the participants’ responses increased for their in-group members when a beneficial outcome for their group was expected.

Both of these examples show the tendency to act in ways that benefit people with which one feels is part of their social group, or in-group. Oxytocin is not only correlated with the preferences of individuals to associate with members of their own group, but it is also evident during conflicts between members of different groups. During conflict, individuals receiving nasally administered oxytocin demonstrate more frequent defense-motivated responses toward in-group members than out-group members.

Further, oxytocin was correlated with participant desire to protect vulnerable in-group members, despite that individual’s attachment to the conflict. Similarly, it has been demonstrated that when oxytocin is administered, individuals alter their subjective preferences in order to align with in-group ideals over out-group ideals.

These studies demonstrate that oxytocin is associated with intergroup dynamics. Further, oxytocin influences the responses of individuals in a particular group to those of another group. The in-group bias is evident in smaller groups; however, it can also be extended to groups as large as one’s entire country leading toward a tendency of strong national zeal.

A study done in the Netherlands showed that oxytocin increased the in-group favoritism of their nation while decreasing acceptance of members of other ethnicities and foreigners.

People also show more affection for their country’s flag while remaining indifferent to other cultural objects when exposed to oxytocin. It has thus been hypothesized that this hormone may be a factor in xenophobic tendencies secondary to this effect. Thus, oxytocin appears to affect individuals at an international level where the in-group becomes a specific “home” country and the out-group grows to include all other countries.

Fear and Anxiety Response

Oxytocin is typically remembered for the effect it has on prosocial behaviors, such as its role in facilitating trust and attachment between individuals. Consequently, oxytocin is often referred to as the “love hormone”. However, oxytocin has a more complex role than solely enhancing prosocial behaviors. There is consensus that oxytocin modulates fear and anxiety; that is, it does not directly elicit fear or anxiety.

Two dominant theories explain the role of oxytocin in fear and anxiety. One theory states that oxytocin increases approach/avoidance to certain social stimuli and the second theory states that oxytocin increases the salience of certain social stimuli, causing the animal or human to pay closer attention to socially relevant stimuli.

Individuals who receive an intranasal dose of oxytocin identify facial expressions of disgust faster than individuals who do not receive oxytocin. Facial expressions of disgust are evolutionarily linked to the idea of contagion. Thus, oxytocin increases the salience of cues that imply contamination, which leads to a faster response because these cues are especially relevant for survival.

In another study, after administration of oxytocin, individuals displayed an enhanced ability to recognize expressions of fear compared to the individuals who received the placebo. Oxytocin modulates fear responses by enhancing the maintenance of social memories.

Rats that are genetically modified to have a surplus of oxytocin receptors display a greater fear response to a previously conditioned stressor. Oxytocin enhances the aversive social memory, leading the rat to display a greater fear response when the aversive stimulus is encountered again.

Gender Differences

To make the role of oxytocin even more complex, it has been shown that oxytocin differentially affects males and females. Females who are administered oxytocin are overall faster in responding to socially relevant stimuli than males who received oxytocin.

Additionally, after the administration of oxytocin, females show increased amygdala activity in response to threatening scenes; however, males do not show increased amygdala activation. This phenomenon can be explained by looking at the role of gonadal hormones, specifically estrogen, which modulate the enhanced threat processing seen in females.

Estrogen has been shown to stimulate the release of oxytocin from the hypothalamus and promote receptor binding in the amygdala.

Further Reading:

Elena Choleris, Donald W. Pfaff, Martin Kavaliers (2013) Oxytocin, Vasopressin and Related Peptides in the Regulation of Behavior Cambridge University Press

Paul J. Zak (2013) The Moral Molecule: How Trust Works Plume; Reprint edition

To sniff at danger – Mind Matters”. Health And Fitness (Boston Globe). 2006-01-12

Last Updated on November 16, 2023