Cells are most effective at communication when they aren’t tightly packed together, a new study shows.

Scientists are beginning to realize that many cellular behaviors, such as metastasizing cancer cells moving through the body or wound healing, aren’t random events, but the result of coordinated actions by cells. Such collective cell movement requires communication.

Andrew Mugler, a Purdue University assistant professor of physics and astronomy who studies cell behavior, said:

“Our hypothesis was proven wrong. Our hypothesis was that cells that are closer to each other should experience a sensory improvement. Instead, we found that long-range communication was better, even though it meant that cells had to be receiving weaker communication signals.“

Telephone Game Effect

“Long range” is a relative term when studying life at the microscopic level, but Mugler says the optimal range for small groups of cells, up to about 200 cells, was five cell diameters. For more than 1,000 cells the optimal range was more like 10-15 cell diameters.

Cells communicate in one of two ways: either by excreting messenger molecules, or by directly exchanging small molecules when closer together.

It turns out that the more direct method becomes less effective because a “telephone game” effect comes into play. But also, Mugler says, the more dispersed cells provide each other with a more accurate view of their environment.

“It would be as if you and I both had thermometers and wanted to measure the outdoor temperature,” he says. “If we are standing right next to each other but we are both in the direct sunlight or in deep shade, we might not get an accurate reading. But if we’re 50 feet apart, we can still communicate, but together we’re more likely to measure an accurate temperature. The same effect happens at the cellular level.“

Mugler says learning more about how cells communicate and organize will be important to gain a better understanding of many areas of medicine:

“We’re studying collective sensing, but this is also important in collective movement, as you would see in embryonic development, wound healing and in cancer. We’re learning that the way disease plays out often has a great deal to do with multicellular effects. As cells to go from a tumor-like state to a metastatic state, reaching other parts of the body often requires coordinated action. Cells leave the tumor and enter the bloodstream, and for certain cancers, this is a collective process.“

Sean Fancher and Andrew Mugler Fundamental Limits to Collective Concentration Sensing in Cell Populations Phys. Rev. Lett. 118, 078101 DOI: 10.1103/PhysRevLett.118.078101

Image: Purdue University, Ken Ritchie

For future updates, subscribe via Newsletter here or Twitter