Researchers from the Cancer Science Institute of Singapore (CSI Singapore) have developed a software program - called ModTect - that can help reveal the relationships between RNA modifications and the development of diseases and disorders. Led by Professor Daniel Tenen and Dr Henry Yang, the scientists carried out their own novel pan-cancer study1 covering 33 different cancer types.

This work is one of few studies demonstrating the association of mRNA modification with cancer development. We show that the epitranscriptome was dysregulated in patients across multiple cancer types and was additionally associated with cancer progression and survival outcomes,

said Dr Henry Yang, Research Associate Professor from CSI Singapore.

RNA Modifications

Most people are familiar with DNA. RNA plays just as much of a vital role in the human body’s cellular functions. Unlike DNA, which has the double-helix structure that most people are familiar with, RNA is a family of single-stranded molecules that perform various essential biological roles.

For example, messenger RNA (mRNA) conveys genetic information that directs the production of different proteins.

Imagine DNA as an expansive library filled with books that carry instructions on how to make different proteins. Each letter in the sequences of words that make up the books' contents are called nucleotides, which are small molecules that are used to store genetic information.

To make sure these instructions are followed, mRNA makes copies of the books and carries them from a cell’s nucleus, where DNA is stored, to the ribosomes. These ribosomes are the “factories” where proteins are synthesised. Without RNA, the valuable genetic instructions stored in our cells would never be used.

Epitranscriptomics

Additional types of RNA perform other important functions. Some help catalyse biochemical reactions, just like enzymes, while others regulate gene expression.

Small chemical modifications to RNA can sometimes occur and alter the function and stability of the molecules. The study of these modifications and their effects is called epitranscriptomics.

Research in the past has suggested a link between the development of diseases like Alzheimer’s disease and cancer with certain RNA modifications. However, despite multiple attempts to study these associations in deeper detail, the study of epitranscriptomes has proven to be difficult until this breakthrough by scientists from CSI Singapore.

Misincorporation Signals

In large patient cohorts, collecting and processing patient samples is challenging. Detecting RNA modifications often involves technically complex processes, such as treating the samples with chemicals that are difficult to access.

These techniques often also require the use of large quantities of sample that are hard to obtain for rarer conditions2. Because of this, scientists have been limited in their capacity to establish relationships between specific RNA modifications and various human diseases.

The software that the CSI Singapore team created uses RNA sequences available from other large clinical cohort studies. To detect modifications in these RNA sequences, ModTect looks for mismatch signals and deletion signals.

Mismatch signals arise when the experimental enzymes scientists use to turn RNA back into DNA incorporates random nucleotides during sequencing. Deletion signals, on the other hand, are when the enzymes sometimes skip a portion of the sequence. Together, these signals are referred to as misincorporation signals.

RNA Modifications As Biomarkers

Unlike other models, ModTect does not require a database of misincorporation signal profiles corresponding to different types of RNA modifications to identify or classify them. ModTect can even identify new signal profiles that drastically differ from what has been previously recorded.

By applying the software to around 11,000 cancer patient RNA-sequencing datasets, the CSI Singapore team was able to embark on a novel study that investigated the associations between RNA modifications and clinical outcomes in patients.

ModTect was able to utilise these large datasets and process them with robust statistical filtering. It unveiled that some types of epitranscriptome were associated with cancer progression and survival outcomes in patients.

This finding highlighted the potential use of RNA modifications as biomarkers - molecules that can be used to test for diseases.

Multinucleotide Mismatch

The transmission of genetic information from DNA in a cell’s nucleus to RNA molecules that carry it to a cell’s ribosomes is a critical process. However, this transmission process is not perfect and leads to differences in RNA-DNA sequences. The sites of these mismatches have been widely documented.

However, it is unclear whether these observations are caused by modifications in mRNA and why these sites have escaped detection by Sanger sequencing (one of the most popular methods of DNA sequencing).

The group at CSI Singapore uncovered a potential explanation as to why these RNA modification signals have eluded detection over the years. They explained how some epitranscriptomes impede the use of standard reverse transcriptase (RT), the enzyme that is used to convert RNA into DNA.

This enzyme is used by scientists in genome sequencing and its use is one of the most critical steps for experimental success. Hence, RNAs that had these impeding modifications were under-represented in Sanger sequencing techniques.

To combat this, the team used newly developed RT enzymes that have been known for their ability to bypass the effects of these modification sites. This allowed them to observe epitranscriptomes that were originally undetectable with Sanger sequencing.

The discipline of epitranscriptomics is still an emerging and rapidly developing field with around 170 RNA modifications being detected so far. By harnessing ModTect, Prof Tenen and his team were able to provide novel insights into the relationships between human diseases - like cancer - and such RNA modifications.

The software will be publicly available on Github for other scientists to use.

The research was supported by the RNA Biology Center at the Cancer Science Institute of Singapore, NUS, and by the National Research Foundation Singapore and the Singapore Ministry of Education under its Research Centres of Excellence initiative.


  1. Kar-Tong Tan, Ling-Wen Ding, Chan-Shuo Wu, Daniel G. Tenen, Henry Yang. Repurposing RNA sequencing for discovery of RNA modifications in clinical cohorts. Science Advances, 2021; 7 (32): eabd2605 ↩︎

  2. D. Dominissini, S. Moshitch-Moshkovitz, M. Salmon-Divon, N. Amariglio, G. Rechavi, Transcriptome-wide mapping of N6-methyladenosine by m6A-seq based on immunocapturing and massively parallel sequencing. Nat. Protoc. 8, 176–189 (2013). ↩︎


For future updates, subscribe via Newsletter here or Twitter