Brain Cartilage Changes May Explain Why Sleep Helps You Learn

The morphing structure of the brain’s “cartilage cells” may regulate how memories change while you snooze, according to new research. Sleep lets the body rest, but not the brain. During sleep, the brain accounts for a day of learning by making strong memories stronger and weak memories weaker, a process known as memory consolidation. But changing memories requires changing synapses, the connections between neurons. Sleep-induced changes need to overcome perineuronal nets, cartilage-like sheaths that not only surround and protect neurons, but also prevent changes in synapses.

Traumatic Brain Injury Damage May Come From Microbubbles

Microbubbles measured in microns — millionths of a meter — can form in cerebral spinal fluid inside the skull during traumatic brain injuries, according to new research. The “formation and dramatic collapse” of these microbubbles could be responsible for some of the damage in a brain injury, the researchers report. Bubble damage may sound trivial. But bubble collapse — a process known as cavitation — and the resulting shock waves can damage the steel foundations of boat propellers.

What Anxiety Does To Our Breathing

Stressful situations can cause anxiety, our body’s natural response to stress. But feelings of apprehension can also be accompanied by physical effects such as rapid breathing, increased heart rate and nausea. How our brain perceives these physical changes – in particular, breathing – could be key to better understanding anxiety disorders and treating them. Anxiety disorders are the most common mental health problem in Europe, affecting about 25 million people across the region.

Let’s Scrap The Neuromyths: No, You Aren’t A ‘Visual’ Or ‘Auditory’ Person

Who hasn’t heard the statement that we only use 10 per cent of our brain? That listening to Mozart’s music makes you smarter or that most learning happens in the first three years of life? Or that a person who is “right-brained” is more creative? Another widespread idea is that we are either visual, auditory or kinesthetic (more sensitive to touch) and that we learn better according to these “styles.”

Non-REM Sleep And REM Sleep Are Both Important For Visual Learning

Which sleep stage is most important for learning: REM or non-REM? Does sleep improve learning by enhancing skills while people snooze, or by cementing those skills in the brain so that they’re less likely to forget them? Do these processes occur every time someone sleeps, or only after they have learned something new? The answer to these questions, according to a new study on visual learning, is all of the above.

Differentiating Between State Anxiety And Trait Anxiety

Tension while waiting for test results, the fear of not making it, the feeling of being under pressure, apprehension - these emotional states often come with physical illnesses like backache, headache, nausea, tachycardia, tremors, difficulty breathing, dizziness. These illnesses, which vary in intensity and duration, are all associated with anxiety, which includes a variety of disorders. While there is no definite cure for anxiety, neuro-scientific research is making progress to develop new diagnostic tools and more efficient treatments.

How To Repair Your Gut: Key Biomolecule Identified

A key biomolecule that enhances the repair of your gut lining by prompting stem cells to regenerate damaged tissue has been discovered by Monash University researchers. The study, published in Cell Stem Cell and led by Professor Helen Abud and Dr. Thierry Jardé from Monash Biomedicine Discovery Institute, investigated the environment that surrounds gut stem cells and used “mini gut” organoid methodology where tiny replicas of gut tissue were grown in a dish.

Oxytocin Could Be Used To Treat Cognitive Disorders Like Alzheimer's

Oxytocin, the hormone that induces feelings of love and well-being within us, has been found to reverse some of the damage caused by amyloid plaques in the learning and memory center of the brain in an animal model of Alzheimer’s. One of the main causes of Alzheimer’s is the accumulation of a protein called amyloid beta (Aβ) in clusters around neurons in the brain, which hampers their activity and triggers their degeneration.