Neurons Respond Further In Advance As Task Expertise Increases

Published

When mice learn to do a new task, their brain activities change over time as they advance from ’novice’ to ’expert.’ The wiring of cell circuits and the activities of neurons reflect the changes, new research shows[1].

Using a two-photon imaging microscope and a wealth of genetic tools, researchers found that neural networks become more focused as mice got better at performing a trained task. They used the data to construct computational models that can inform their understanding of the neuroscience behind decision-making.

“We recorded the activity from hundreds of neurons all at the same time and studied what the neurons did over learning. Nobody really knew how animals or humans learn the structure of a task and how the neural activity supports that,”

said Cold Spring Harbor Laboratory Associate Professor Anne Churchland.

Along with a 2016 study led by Dr. Benjamin Arenkiel that found networks of inhibitory neurons form maps that become broader with maturation, the work adds insight into how the brain stores and processes information.

Perceptual Decision-making

The team, including Farzaneh Najafi, the study’s first author and a postdoctoral fellow in Churchland’s lab, started by training mice on perceptual decision-making tasks.

The mice received multisensory stimuli in the form of a sequence of clicks and flashes presented together. Their job: tell researchers whether those are happening at a high or low rate by licking one of three waterspouts in front of them.

They licked the middle spout to start the trial, with one side reporting a high-rate decision and the other for a low-rate decision. When the mice made the correct decision, they received a reward.

“Most decision-making studies focused on the period where the animals are really experts. But we were able to see how they arrive at the state by measuring the neurons in their brain all the way through learning. We found that in all the animals, their learning occurs gradually over about four weeks. And we found that what supports learning is activity changes in a whole bunch of neurons,”

said Churchland, the senior author of the study.

Advanced Neuron Response

The neurons, the team discovered, became more selective in responding to an activity associated with a particular task. They also started reacting faster and more immediately.

“They’ll respond really strongly in advance of one choice and much less so in advance of the other choice,”

Churchland said.

When the animals are just beginning to learn, the neurons don’t respond until around the time it makes a choice. But as the animal gains expertise, the neurons respond much further in advance.

“We can kind of read the animal’s mind in a way; we can predict what the animal is going to do before he does it. When you’re a novice at something, your brain is doing all different things, so you have neurons engaged in all different things. But then, when you’re an expert, you hone in on exactly what you’re going to do, and we can pick up that activity,”

Churchland said.

Learning Networks

Using machine learning algorithms, the researchers decoded neural activity by training a small artificial network called the ‘Linear Support Vector Machine’. It collects performance data from multiple trials and combines it with the activity of all the neurons, weighing them to guess at what the animal’s going to do.

As the animal improves at the task, its neural networks get more refined, precise, and specific. The researchers can mirror that onto the artificial network, which can then predict the animal’s decision with about 90 percent accuracy.

The learning models also offer another way of looking at specific types of neurons in the brain involved in cognition, like excitatory and inhibitory neurons, which trigger positive and negative changes, respectively. In this study, the team found that the inhibitory neurons are part of very selective sub-networks in the brain, and they’re strongly selective for the choice the animal will make.

These neurons are part of a biophysical model that helps researchers understand decision-making. As researchers refine these models, they can better understand how cognition informs behaviour.

“We’ve learned a lot about perceptual decision-making-the decisions that a subject would get right and wrong, how long it takes to make those decisions, what the neural activity would look like during decision-making-by making different kinds of models that make really concrete predictions. Now we can understand, hopefully, better, why these very selective sub-networks are there, how they help us make better decisions, and how they are wired up during learning,”

Churchland said.

[1] Farzaneh Najafi, et al. Excitatory and Inhibitory Subnetworks Are Equally Selective during Decision-Making and Emerge Simultaneously during Learning. Neuron

Last Updated on February 22, 2023