By transplanting mouse embryonic interneurons into the brains of mice and combining that procedure with training to lessen fear, scientists in China are reporting they can help to reduce the fear response.

A bad experience can induce fear and caution, hence the expression “once bitten, twice shy”. How to effectively reduce the memory of aversive events is a growing area of research in neuroscience.

The study’s senior author Yong-Chun Yu, a professor at the Institutes of Brain Science at Fudan University in Shanghai, says:

“Anxiety and fear-related disorders such as post-traumatic stress disorder cause great suffering and impose high costs to society. Pharmacological and behavioral treatments of PTSD can reduce symptoms, but many people tend to relapse. There’s a pressing need for new strategies to treat these refractory cases.”

Fear Extinction

The study used traditional conditioning to instill fear in the mice. Researchers exposed them to a sound as a neutral stimulus, followed by a mild shock to the foot.

To determine the level of fear, they measured the amount of time the mice exhibited freezing behavior — the natural sympathetic fear response in prey animals that is indicated by crouching. They then conducted fear extinction training, in which the mice were exposed to the sound but not the shock.

After a few rounds, the freezing response times were significantly reduced.

To determine the contribution that transplanting immature interneurons into the amygdala — a brain structure known to be involved in processing of fear and other emotions — could have on fear extinction training, they inserted medial ganglionic eminence (MGE) cells taken from embryos into the amygdala regions of mature mice.

The transplanted cells were labeled with green fluorescent protein, enabling the researchers to experimentally confirm that the new cells were integrating into the brains' circuits.

“We found that although the transplanted interneurons did not alter the formation of fear memories, they reduced recovery and renewal of fear after extinction training,” Yu says.

However, transplantation of the neurons alone was not enough to reduce fear memories, indicating that the MGE cells were boosting the effectiveness of that training.

“Unexpectedly, we observed that the erasure of fear memory is facilitated only by transplanted immature interneurons—two weeks after transplantation,” he adds. “Previous studies had indicated that transplanted MGE cells induce plasticity when they are relatively mature—four weeks after transplantation."

Inhibitory Neuron Transplantation

Further studies indicated that the transplanted immature interneurons reactivated a juvenile-like plasticity in the mature amygdala.

“Likely related to the changes in the expression of perineuronal nets (PNNs), which are responsible for synaptic stabilization, we found that transplanted immature neurons enhance synaptic plasticity in the amygdala’s circuits by disrupting PNNs, converting the amygdala to a juvenile stage,” Yu says.

Additional experiments are required to determine how the inhibitory neuron transplantation rejuvenate the mature circuits.

“We still don’t know the mechanism by which these immature neurons modulate the fear extinction behavior in the mice,” he concludes. “We also need to determine the exact subtype of transplanted interneurons and the exact subregion in the amygdala that are responsible for these behavioral effects."

Wu-Zhou Yang, Ting-Ting Liu, Jun-Wei Cao, Xuan-Fu Chen, Xiao Liu, Min Wang, Xin Su, Shu-Qing Zhang, Bin-Long Qiu, Wen-Xiang Hu, Lin-Yun Liu, Lan Ma, and Yong-Chun Yu Fear Erasure Facilitated by Immature Inhibitory Neuron Transplantation Neuron; DOI:

Image: Mouse hippocampus with mossy fiber interneurons. By National Institutes of Health (NIH).

For future updates, subscribe via Newsletter here or Twitter