Implantable Wireless Optogenetics Device Stimulates Nerves In Mice

Published

A miniature device which blends optogenetics, using light to control the activity of the brain, with a newly developed technique for wirelessly powering implanted devices is the first fully internal method of delivering optogenetics.

The device dramatically expands the scope of research that can be carried out through optogenetics to include experiments involving mice in enclosed spaces or interacting freely with other animals.

Ada Poon, an assistant professor of electrical engineering at Stanford, said:

“This is a new way of delivering wireless power for optogenetics. It’s much smaller and the mouse can move around during an experiment.”

Scaled Down

Up unitl now, optogenetics has required a fiber optic cable attached to a mouse’s head to deliver light and control nerves. With this relatively restrictive headgear, mice can move freely in an open cage but can’t navigate an enclosed space or burrow into a pile of sleeping cage-mates the way an unencumbered mouse could.

Also, before an experiment a scientist has to handle the mouse to attach the cable, stressing the mouse and possibly altering the outcome of the experiment. These restrictions limit what can be learned through optogenetics.

People have successfully investigated a range of scientific questions including how to relieve tremors in Parkinson’s disease, the function of neurons that convey pain and possible treatments for stroke. However, addressing issues with a social component like depression or anxiety or that involve mazes and other types of complex movement is more challenging when the mouse is tethered.

Optogenetics only works on nerves that have been carefully prepared to contain the proteins that respond to light.

In the lab, scientists either breed mice to contain those proteins in select groups of nerves or they carefully and painstakingly inject viruses carrying the protein DNA into nerves the size of dental floss. Shining a light, whether through a fiber optic cable or a wireless device, on neurons that haven’t been prepared has no effect.

Powered Up

Poon says that developing the tiny device to deliver light was the easy part. What was hard was figuring out how to power it over a large area without compromising power efficiency.

In behavioural experiments, the mouse would be moving all around, and the researchers needed a way of tracking that movement to provide localized power. Poon knew other labs were tackling the same problem using bulky devices that affix to the skull and complex arrays of coils paired with sensors to locate the mouse and deliver localized power.

“We were lazy,” Poon said. “That sounded like a lot of work.”

So instead, she got what she called a crazy idea to use the mouse’s own body to transfer radio frequency energy that was just the right wavelength to resonate in a mouse. Crazy maybe, but it worked, and she published the results Aug. 4 in Physical Review Applied with co-first authors John Ho, a graduate student who is now an assistant professor at the National University of Singapore, and Yuji Tanabe, a research associate in her lab.

Poon had the idea but initially didn’t know how to build a chamber to amplify and store radio frequency energy. She and Tanabe consulted with Tanabe’s father, who had worked at Stanford’s SLAC research center and knew a thing or two about machining such a cavity and then travelled to Japan to do the initial assembly and testing.

Tanabe’s dad referred to their final chamber as a “kindergarten project,” but it worked. However, in its native state the open chamber would radiate energy in all directions.

Instead, a grid was overlaid on top of the chamber with holes that were smaller than the wavelength of the energy contained within. That essentially trapped the energy inside the chamber.

The key is that there’s a bit of wiggle room at the grid. So if something like, say, a mouse paw were present, it would come in contact with the boundary of all that stored energy.

Mouse Conduit

And remember how the wavelength is the exact wavelength that resonates in mice? The mouse essentially becomes a conduit, releasing the energy from the chamber into its body, where it is captured by a 2 mm coil in the device.

Wherever the mouse moves, its body comes in contact with the energy, drawing it in and powering the device. Elsewhere, the energy stays tidily contained. In this way, the mouse becomes its own localizing device for power delivery.

This novel way of delivering power is what allowed the team to create such a small device. And in this case, size is critical.

The device is the first attempt at wireless optogenetics that is small enough to be implanted under the skin and may even be able to trigger a signal in muscles or some organs, which were previously not accessible to optogenetics.

The team says the device and the novel powering mechanism open the door to a range of new experiments to better understand and treat mental health disorders, movement disorders and diseases of the internal organs.

Reference:
  1. Kate L Montgomery, Alexander J Yeh, John S Ho, Vivien Tsao, Shrivats Mohan Iyer, Logan Grosenick, Emily A Ferenczi, Yuji Tanabe, Karl Deisseroth, Scott L Delp & Ada S Y Poon. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nature Methods (2015) doi:10.1038/nmeth.3536

Last Updated on October 30, 2023