Neuronal Coupling Breakdown Could Explain Working Memory Limits

Published

Trying to keep too much information in our working memory leads to a communication breakdown between parts of the brain responsible for maintaining it, a new study from City, University of London and MIT has found.

Everyday experience makes it obvious – sometimes frustratingly so – that our working memory capacity is limited and we can only keep so many things consciously in mind at once.

The authors of the study suggest that the ‘coupling’, or synchrony, of brain waves among three key regions breaks down in specific ways when visual working memory load becomes too much to handle. This loss of synchrony means the regions can no longer communicate with each other to sustain working memory.

Working Memory Capacity

Maximum working memory capacity – for instance the total number of images a person can hold in working memory at the same time – varies between individuals but averages about seven. This new study tries to understand what causes the memory to have this intrinsic limit.

“At peak memory capacity, the brain signals that maintain memories and guide actions based on these memories, reach their maximum. Above this peak, the same signals break down,”

said lead author Dr Dimitris Pinotsis, a lecturer at the Department of Psychology at City, University of London, and a research affiliate at the Department of Brain and Cognitive Sciences at MIT.

As researchers have previously correlated working memory capacity with intelligence, understanding what causes working memory to have an intrinsic limit is important because it could also help explain the limited nature of conscious thought and how it might break down in diseases.

“Because certain psychiatric diseases can lower capacity, the findings could explain more about how such diseases interfere with thinking,”

said Professor Earl Miller, the study’s senior author and the Picower Professor of Neuroscience at MIT’s Picower Institute for Learning and Memory.

Memory By Committee

To investigate working memory limits, the researchers carried out a detailed statistical analysis of data when animal subjects played a simple game. Monkeys had to spot the difference when they were shown a set of squares on a screen and then, after a brief blank screen, a nearly identical set in which one square had changed colour.

The number of squares involved, hence the working memory load of each round, varied so that sometimes the task exceeded the animals’ capacity.

As the animals played, the researchers measured the frequency and timing of brain waves produced by ensembles of neurons in three regions presumed to have an important – though as yet unknown – relationship in producing visual working memory: the prefrontal cortex (PFC), the frontal eye fields (FEF), and the lateral intraparietal area (LIP).

Using sophisticated mathematical techniques, they found that the regions essentially work as a committee, without much hierarchy, to keep working memory going. They also found changes as working memory approached and then exceeded capacity.

In particular, the researchers found that above capacity the PFC’s coupling to the FEF and LIP at low frequency stopped.

Communication Breakdown

As previous studies have suggested that the PFC’s role might be to employ low-frequency waves to provide the feedback the keeps the working memory system in sync, the researchers suggest that when that signal breaks down, the whole enterprise may as well. This observation may also explain why memory capacity has a finite limit.

Professor Miller said:

“We knew that stimulus load degrades stimulus processing in various brain areas, but we hadn’t seen any distinct change that correlated with reaching capacity, but we did see this with feedback coupling. It drops off when the subjects exceeded their capacity. The PFC stops providing feedback coupling to the FEF and LIP.”

The findings could also help optimise heads-up displays in cars and to develop diagnostic tests for diseases like schizophrenia and dementia, among other applications.

The study received support from the US National Institute of Mental Health and the MIT’s Picower Institute Innovation Fund.

Reference:
  1. Dimitris A Pinotsis, Timothy J Buschman, Earl K Miller. Working Memory Load Modulates Neuronal Coupling. Cerebral Cortex, doi: 10.1093/cercor/bhy065

Last Updated on November 20, 2023