Scientist Finds Brain Signature That Predicts Your Emotions


A method of predicting human emotions based on brain activity, with over 90 percent accuracy, has been discovered by a Dartmouth College researcher and his colleagues. The findings could help in diagnosing and treating a range of mental and physical health conditions.

Due to its accuracy, and the large number of participants who reflect the general adult population, rather than just college students, the study is unusual. Says lead author Luke Chang, an assistant professor in Psychological and Brain Sciences at Dartmouth:

“It’s an impressive demonstration of imaging our feelings, of decoding our emotions from brain activity. Emotions are central to our daily lives and emotional dysregulation is at the heart of many brain- and body-related disorders, but we don’t have a clear understanding of how emotions are processed in the brain. Thus, understanding the neurobiological mechanisms that generate and reduce negative emotional experiences is paramount."

Neuroimaging Brain Signatures

The mission to understand the emotional brain has motivated hundreds of neuroimaging studies in recent years.

But for neuroimaging to be useful, sensitive and specific neural correlates of consciousness, or “brain signatures”, must be developed that can be applied to individual people to yield information about their emotional experiences, neuropathology or treatment prognosis.

Thus far, the neuroscience of emotion has yielded many important results but no such indicators for emotional experiences.

In this study, the researchers’ goals were:

  • to develop a brain signature that predicts the intensity of negative emotional responses to evocative images

  • to test the signature in generalizing across individual participants and images

  • to examine the signature’s specificity related to pain

  • to explore the neural circuitry necessary to predict negative emotional experience

The study involved 182 participants who were shown negative photos (bodily injuries, acts of aggression, hate groups, car wrecks, human feces) and neutral photos. Thirty additional participants were also subjected to painful heat.

Understanding Emotions in the Brain

Using brain imaging and machine learning techniques, the researchers identified a neural signature of negative emotion, a single neural activation pattern distributed across the entire brain that accurately predicts how negative a person will feel after viewing unpleasant images.

“This means that brain imaging has the potential to accurately uncover how someone is feeling without knowing anything about them other than their brain activity,” Chang says. “This has enormous implications for improving our understanding of how emotions are generated and regulated, which have been notoriously difficult to define and measure. In addition, these new types of neural measures may prove to be important in identifying when people are having abnormal emotional responses – for example, too much or too little—which might indicate broader issues with health and mental functioning."

Unlike most previous research, the new study:

  • Included a large sample size that reflects the general adult population and not just young college students

  • Used machine learning and statistics to develop a predictive model of emotion

  • Tested participants across multiple psychological states, which allowed researchers to assess the sensitivity and specificity of their brain model

Chang says:

“We were particularly surprised by how well our pattern performed in predicting the magnitude and type of aversive experience. As skepticism for neuroimaging grows based on over-sold and -interpreted findings and failures to replicate based on small sizes, many neuroscientists might be surprised by how well our signature performed. Another surprising finding is that our emotion brain signature using lots of people performed better at predicting how a person was feeling than their own brain data. There is an intuition that feelings are very idiosyncratic and vary across people. However, because we trained the pattern using so many participants – for example, four to 10 times the standard fMRI experiment—we were able to uncover responses that generalized beyond the training sample to new participants remarkably well."

Chang LJ, Gianaros PJ, Manuck SB, Krishnan A, Wager TD
A Sensitive and Specific Neural Signature for Picture-Induced Negative Affect.
PLoS Biol 13(6): e1002180. DOI: 10.1371/journal.pbio.1002180

Last Updated on November 14, 2022