A new research tool has enabled biologists to watch in real time the cell renewal process that keeps gut tissue healthy, as well as the interactions between bacterial species that make up the microbiome. The system, dubbed Bellymount, allowed researchers to peer into the live tissue of the fruit fly gut and better understand the many complex, overlapping processes occurring there.

“Before now, no one has ever watched how gut renewal progresses because it occurs over many days and happens deep inside the body,"

explained study co-leader Lucy O’Brien.

Gut Renewal Process

O’Brien developed the tool to understand how stem cells in the gastrointestinal system drive the tissue renewal process that gets rid of sick cells and replaces them with new, healthy ones.

When this process is disrupted, it has an aging effect. Understanding it could drive improvements in precision medicine and guide the development of regenerative therapies.

Using Bellymount, the researchers were able to watch stem cells coordinating during the organ renewal process and discovered that the rate at which individual stem cells generate adult replacement cells varies greatly. No one had seen the gut renewal process play out in real time before this.

“Each stem cell seems to work at its own pace,"

said lead author Leslie Koyama of Stanford.

Beyond The Gut

Bellymount will allow researchers to spy on other visceral organs in fruit flies, watching how organs communicate with each other during whole-body processes.

[caption id=“attachment_102544” align=“aligncenter” width=“700”]Whole-abdomen, micron-resolution imaging of organs, tissues, and cells in live, intact animals. Whole-abdomen, micron-resolution imaging of organs, tissues, and cells in live, intact animals.
Credit: Ludington WB, et al. CC-BY[/caption]

It also enabled Carnegie’s Will Ludington, who specializes in understanding the interactions between species in the microbiome, to better understand how the gut’s bacteria contribute to many of its functions by watching them unfold.

“Bellymount let us observe the dynamic interactions of gut bacterial populations with the host for the first time,"

he said.

Microbiome Stability

They found that there are regional differences in microbiome stability that actually mimic the regionality of the stem cell activity. Some parts of the microbiome are continuously turned over and others are more like a reservoir.

“It makes you wonder how gut stem cells and gut bacteria are talking to each other and possibly coordinating their actions. Now we have the power to actually eavesdrop on their conversations,"

said co-author K.C. Huang, also of Stanford.

Because Bellymount allows investigators to peek at the activity of all of the flies' visceral organs, this crosstalk can be monitored across tissues and inform how they understand whole-body processes, such as immune surveillance, reproduction, aging, and cancer.

The work was supported by National Institutes of Health, the Allen Discovery Center at Stanford on Systems Modeling of Infection, and American Cancer Society.

[1] Koyama LAJ, Aranda-Díaz A, Su Y-H, Balachandra S, Martin JL, Ludington WB, et al. (2020) Bellymount enables longitudinal, intravital imaging of abdominal organs and the gut microbiota in adult Drosophila. PLoS Biol 18(1): e3000567. https://doi.org/10.1371/journal.pbio.3000567

Top Image: Leslie Koyama and Lucy O’Brien


For future updates, subscribe via Newsletter here or Twitter