Adenine DNA Methylation Seen In Stress Response

Published

A novel DNA adenine modification, N(6)-methyladenine (6mA), recently discovered in mammalian cells, has been demonstrated in the mouse brain in response to environmental stress in a study from Emory University.

The function of 6mA in the mammalian brain remain unclear.

Geneticists at Emory University School of Medicine led by Peng Jin, PhD have been studying this new modification of DNA – methylation of the DNA letter A (adenine). They’ve found that it appears more in the brain under conditions of stress, and may have a role in neuropsychiatric disorders.

Adenine DNA Methylation

Methylation on the DNA letter C (cytosine) generally shuts genes off and is an important part of epigenetic regulation, a way for cells to change how the DNA code is read without altering the DNA letters themselves. Methylation describes a mark consisting of an extra carbon atom and three hydrogens: -CH3.

What if methylation appears on adenine?

In bacteria, N6-methyladenine is part of how they defend themselves against invasion by phages (viruses that infect bacteria). The same modification was recently identified as present in the DNA of insects and mammals, but this epigenetic flourish has been awaiting a full explanation of its function.

Just to start, having that extra -CH3 jutting out of the DNA could get in the way of proteins that bind DNA and direct gene activity. For C-methylation, scientists know a lot about the enzymes that grab it, add it or erase it. For A-methylation, less is known.

“We found that 6-methyl A is dynamic, which could suggest a functional role,” Jin says. “That said, the enzymes that recognize, add and erase this type of DNA methylation are still mysterious.”

It does appear that the enzymes that add methyl groups to A when it is part of RNA are not involved, he adds.

Methylation Cross-talk

First author Bing Yao, PhD, assistant professor of human genetics, recently established his own laboratory at Emory to examine these and other emerging parts of the DNA alphabet. Jin is vice chair of research in the Department of Human Genetics.

In their paper, Yao, Jin and their colleagues looked at the prefrontal cortex region of the brain in mice that were subjected to stress, in standard models for the study of depression, a forced swim test and tail suspension test.

Dynamic 6mA is associated with depression-linked genetic loci.

Significant overlap between depression-associated genes containing the top 17 most significant SNPs, schizophrenia (SCZ)-related risk genes and autism spectrum disorders (ASD)-related risk genes with dynamic 6mA marked genes upon stress are indicated.

P-value was calculated by Pearson’s χ 2 test. b The genes related to aortic lesions, obesity or randomly selected genes did not show significant enrichment.

Statistical significance was calculated by Pearson’s χ 2 tests, and p-values are indicated.

Under these conditions, the abundance of N6-methyladenine in the brain cells’ DNA rose four-fold, the scientists found. The DNA modification was detected with two sensitive techniques: liquid chromatography/mass spectrometry and binding to an antibody against N6-methyladenine.

The peak abundance is about 25 parts per million, which isn’t that high – but it appears to be confined to certain regions of the genome.

The methyl-A modification tended to appear more in regions that were between genes and was mostly excluded from the parts of the genome that encode proteins. The loss of methyl-A correlates with genes that are upregulated with stress, suggesting that something removes it around active genes.

There does seem to be some “cross talk” between A and C methylation, Jin adds.

Genes bearing stress-induced 6mA changes overlapped with those associated with neuropsychiatric disorders; a relationship that needs more investigation. The scientists speculate that aberrant 6mA in response to stress could contribute to neuropsychiatric diseases by ectopically recruiting DNA binding proteins.

The work was supported in part by grants from the National Institutes of Health.

Bing Yao, Ying Cheng, Zhiqin Wang, Yujing Li, Li Chen, Luoxiu Huang, Wenxin Zhang, Dahua Chen, Hao Wu, Beisha Tang & Peng Jin
DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress
Nature Communications 8, Article number: 1122 (2017) doi:10.1038/s41467-017-01195-y

 

Last Updated on November 11, 2022